DO NOW: WRITE DOWN YOUR ANSWERS

1) Out of the following pairs, choose the color with a higher energy/frequency:

orange or red

blue or orange

yellow or violet

red or green

- 2) How do you think eclipses occur?
- 3) Why don't we have an eclipse every month?

Today's Objectives:

- Review the properties of the Sun
- OBe able to explain how an eclipse occurs
- Describe parallax and how it is used to determine the distance of stars

HW:

Read the bottom of page 350 titled "Measuring Distance by Triangulation and Parallax" through page 354.

Answer question #2 under *Though Questions* on page 384

Sun Video

3, 2, 1 . . .

- 3 things you already knew about
- 2 new things you did not know
- 1 question you have still

explorlearning.com

CBE113 air819

Eclipse Exploration

- 1) How/why do eclipses occur?
- 2) How often do they occur?
- 3) Why don't we have eclipses every month?

Solar Distances to Know

- 1 AU (distance from earth to sun) = 1.5×10^{11} meters
- 1 light-year = 9.5×10^{15} meters
- 1 Parsec (parallax and arc second) = 3.26 light-years

Parallax

Parallax is a difference in the <u>apparent position</u> of an object viewed along two different lines of sight.

Astronomers used the principles of parallax and math to calculate distance of celestial objects (like our sun, & other stars).

Parallax activity

Parallax activity

- 2 Purt II: What happons when your finger is a star?
 7. The point labeled E in Figure 2 represents the Earth in its orbit in January. Use a ruler and draw a line from the Earth to the background stars going through Star A. Mark the Earth-Star A-Sun angle. This is called the parallaz.
- Test your prediction by using Figure 2. Comment on your results. Were you correct?

- 12. How about star B over the same number of years compared to the motion of Star A?

